skip to main content


Search for: All records

Creators/Authors contains: "Van Eck, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Genome editing technologies are being widely adopted in plant breeding. However, a looming challenge of engineering desirable genetic variation in diverse genotypes is poor predictability of phenotypic outcomes due to unforeseen interactions with pre-existing cryptic mutations. In tomato, breeding with a classical MADS-box gene mutation that improves harvesting by eliminating fruit stem abscission frequently results in excessive inflorescence branching, flowering and reduced fertility due to interaction with a cryptic variant that causes partial mis-splicing in a homologous gene. Here, we show that a recently evolved tandem duplication carrying the second-site variant achieves a threshold of functional transcripts to suppress branching, enabling breeders to neutralize negative epistasis on yield. By dissecting the dosage mechanisms by which this structural variant restored normal flowering and fertility, we devised strategies that use CRISPR-Cas9 genome editing to predictably improve harvesting. Our findings highlight the under-appreciated impact of epistasis in targeted trait breeding and underscore the need for a deeper characterization of cryptic variation to enable the full potential of genome editing in agriculture. 
    more » « less
  2. Plant transformation has enabled fundamental insights into plant biology and revolutionized commercial agriculture. Unfortunately, for most crops, transformation and regeneration remain arduous even after more than thirty years of technological advances. Genome editing provides new opportunities to enhance crop productivity, but relies on genetic transformation and plant regeneration, which are bottlenecks in the process. Herein we review the state of plant transformation and point to innovations needed to enable genome editing in crops. Plant tissue culture methods need optimization and simplification for efficiency and minimize time in culture. Currently, specialized facilities exist for crop transformation. Single cell and robotic techniques should be developed for high throughput genomic screens. Utilization of plant genes involved in developmental reprogramming, wound response, and/or homologous recombination could boost recovery of transformed plants. Engineering universal Agrobacterium strains and recruitment of other microbes, such as Ensifer or Rhizobium, could facilitate delivery of DNA and proteins into plant cells. Synthetic biology should be employed for de novo design of transformation systems. Genome editing is a potential game-changer in crop genetics when plant transformation systems are optimized. 
    more » « less